Publications
Preprints
- L. F. Prudente and D. R. Souza, Global convergence of a BFGS-type algorithm for nonconvex multiobjective optimization problems, submitted, 2023. [Codes]
- Gonçalves, M. L. N. Subsampled cubic regularization method for finite-sum minimization, 2022.
- Melo, J. G.; Monteiro, R. D. C.. Iteration-Complexity of a Linearized Proximal Multiblock ADMM Class for Linearly Constrained Nonconvex Optimization Problems, (Technical Report-2017).
-
Melo, J. G.; Monteiro, R. D. C.. Iteration-Complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs (Technical Report-2017: PDF).
Publications 2023
- Adona, V.A.; Gonçalves, M. L. N. An inexact version of the symmetric proximal ADMM for solving separable convex optimization. Numerical Algorithms, 94, 1--28, 2023. (pdf)
- AGUIAR, A. A. ; FERREIRA, O. P. ; PRUDENTE, L. F. . Inexact gradient projection method with relative error tolerance. Computational Optimization and Applications 84, pp. 363–395 (2023).
- Assunção P. B., Ferreira O.P., and Prudente, L.F.: A generalized conditional gradient method for multiobjective composite optimization problems, Optimization, pp. 1-31, 2023. [PDF - Codes]
- Bello-Cruz, Y., Gonçalves, M. L. N., Krislock, N.. On FISTA with a relative error condition. Computational Optimization and Applications, 84, 295-318, 2023.
- DA SILVA JUNIOR, P. C., FERREIRA, O. P., SECCHIN, L. D., SILVA, G. S.; Secant-inexact projection algorithms for solving a new class of constrained mixed generalized equations problems, J. Comput. Appl. Math., v. 440, Paper No. 115638, 2023.
- DÍAZ MILLÁN, R., FERREIRA, O. P.; UGON, J.; Approximate Douglas-Rachford algorithm for two-sets convex feasible problems, J. Global Optim, v. 86, p. 621-636, 2023 (pdf).
- FERREIRA, O. P.; NÉMETH, S. Z; ZHOU, JINZHEN. Convexity of sets and quadratic functions on the hyperbolic space, J. Optim. Theory Appl., to appear 2023 (pdf).
- FERREIRA, O. P.; NÉMETH, S. Z; GAO, Y. Reducing the projection onto the monotone extended second-order cone to the pool-adjacent-violators algorithm of isotonic regression, Optimization, to appear 2023 (pdf).
- FERREIRA, O. P.; NÉMETH, S. Z; ZHOU, JINZHEN. Convexity of Non-homogeneous Quadratic Functions on the Hyperbolic Space, J. Optim. Theory Appl.,v 199, p.1085-1105,2023 (pdf).
- FERREIRA, O. P.; GRAPIGLIA,G. N.; SANTOS, E. M.; SOUZA, J. C. O; .A subgradient method with non-monotone line search, Comput. Optim. and Appl., v. 84, n. 1, p. 397-420, 2023 (pdf).
-
FERREIRA, O. P.; JEAN-ALEXIS, CÉLIA; PIÉTRUS, ALAIN; SILVA, G. N. On Newton’s method for solving generalized equations, J. Complexity, v. 74, Paper No.101697, 17 pp, 2023 (pdf).
- Gonçalves, M. L. N.; Menezes, T.C. A framework for convex-constrained monotone nonlinear equations and its special cases. Computational and Applied Mathematics, 2023 (pdf) [code]
-
Kong, Weiwei, Melo, J. G.; Monteiro, R. D. C.Iteration Complexity of an Inner Accelerated Inexact Proximal Augmented Lagrangian Method Based on the Classical Lagrangian Function. Siam Journal on Optimization, v. 33, p. 181-210, 2023.
-
Kong, Weiwei, Melo, J. G.; Monteiro, R. D. C.: Iteration Complexity of a Proximal Augmented Lagrangian Method for Solving Nonconvex Composite Optimization Problems with Nonlinear Convex Constraints. Mathematics of Operations Research, v. 48, p. 1066-1094, 2023.
-
Kong, Weiwei, Melo, J. G.; Monteiro, R. D. C: A Proximal Augmented Lagrangian Method for Linearly Constrained Nonconvex Composite Optimization Problems. Journal of Optimization Theory and Applications, 2023.
Publications 2022
- O. P. Ferreira, M. V. Lemes, and L. F. Prudente, On the inexact scaled gradient projection method, Computational Optimization and Applications 81(1), pp. 91-125, 2022.
- M. L. N. Gonçalves, F. S. Lima, and L. F. Prudente, A study of Liu-Storey conjugate gradient methods for vector optimization, Applied Mathematics and Computation 425, pp. 127099, 2022.
- Gonçalves, D. S., Gonçalves, M. L. N.; Menezes, T.C.. Inexact variable metric method for convex-constrained optimization problems. Optimization, 71(1), 145-163, 2022.
- Grapiglia, G.N.; Gonçalves, M. L. N.; Silva, G.N. A Cubic Regularization of Newton's Method with Finite-Difference Hessian Approximations. Numerical Algorithms, 90, 607–630 (2022).
- FERREIRA, O. P.; SOSA, W. S.. On the Frank–Wolfe algorithm for non-compact constrained optimization problems, Optimization,v.71, n.1, p. 197-211, 2022.
- BORTOLOTI, M. A.de A.; FERNANDES, T. A. ; FERREIRA, O. P.. An efficient damped Newton-type algorithm with globalization strategy on Riemannian manifolds, J. Comput. Appl. Math., v. 403, Paper No. 113853, 15 pp, 2022.
- (2022) A proximal gradient splitting method for solving convex vector optimization problems, Optimization, 71:1, 33-53
- L. F. Prudente and D. R. Souza, A quasi-Newton method with Wolfe line searches for multiobjective optimization, Journal of Optimization Theory and Applications 194, pp. 1107-1140, 2022.
- G. C. Bento; CRUZ NETO, J. X. ; MEIRELES, L. V. ; SOUBEYRAN, A. .Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm. ANNALS OF OPERATIONS RESEARCH 316, pp. 1425–1443, 2022.
- Bento, G.C.; CRUZ NETO, J. X. ; MELO, I. D. L. . Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, pp. 1087-1105, 2022.
- Bento, G.C.; CRUZ NETO, J. X. ; SOARES JUNIOR, P. A. ; SOUBEYRAN, A. . A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires. ANNALS OF OPERATIONS RESEARCH 316, pp. 1301–1318 (2022).
- GONÇALVES, MAX L. N. ; Melo, Jefferson G. ; MONTEIRO, RENATO D. C. . Projection-free accelerated method for convex optimization. OPTIMIZATION METHODS & SOFTWARE 37, pp. 214-240, 2022.
- AGUIAR, A. A. ; FERREIRA, O. P. ; PRUDENTE, L. F. . Subgradient method with feasible inexact projections for constrained convex optimization problems. OPTIMIZATION, v. 71, p. 3515-3537, 2022.
- GONÇALVES, M. L. N. ; LIMA, F. S. ; PRUDENTE, L. F. . Globally convergent Newton-type methods for multiobjective optimization. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, v. 83, p. 403-434, 2022.
Publications 2021
- Iusem, A.N., Melo, J.G. & Serra, R.G. A Strongly Convergent Proximal Point Method for Vector Optimization. J Optim Theory Appl 190,183–200 (2021).
- Assunção, P. B., Ferreira, O. P.; Prudente, L. F.. Conditional gradient method for multiobjective optimization, Computational Optimization and Applications, v. 78, n. 3, p. 741-768, 2021.
- R. Díaz Millán, O. P. Ferreira, and L. F. Prudente, Alternating conditional gradient method for convex feasibility problems, Computational Optimization and Applications 80(1), pp. 245-269, 2021.
- Gonçalves, D. S., Gonçalves, M. L. N.; Oliveira, F.R.. An inexact projected LM type algorithm for constrained nonlinear systems. Journal of Computational and Applied Mathematics, 391, 113-421, 2021.
Publications 2020
1. Adona, V.A.; Gonçalves, M. L. N.; Melo, J. G. An inexact proximal generalized alternating direction method of multipliers. Computational Optimization and Applications, 76(3), 621-647, 2020.
2. Batista, E. E. A; Bento, G. C; Ferreira, O. P. An extragradient-type algorithm for variational inequality on Hadamard manifolds. ESAIM: Control, Optimisation and Calculus of Variations, v. 26, Article Number 63, Number of page(s) 16, 2020.
3. Bento, G.C., Bitar, S.D. B. ; Da Cruz Neto, J. X. ; Soubeyran,, A.; Souza, J. C.. A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems. Computational Optimization and Applications, 2020.
4. Bortoloti, M, A. De A. ; Fernandes, T. A. ; Ferreira, O. P. ; Yuan, JinYun. Damped Newton's method on Riemannian manifolds. Journal of Optimization Theory and Applications, v. 77, p. 643-660, 2020.
5. De Oliveira, F. R.; Ferreira, O. P. Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds. Journal of Optimization Theory and Applications, v. 185, p. 522-539, 2020.
6. De Oliveira F. R.; Ferreira, O. P. Inexact Newton method with feasible inexact projections for solving constrained smooth and nonsmooth equations. Applied Numerical mathematics, v. 156, p. 63-76, 2020.
7. Ferreira, O. P; Louzeiro, M. S.; Prudente, L. F.. Iteration-complexity and asymptotic analysis of steepest descent method for multiobjective optimization on Riemannian manifolds. Journal of Optimization Theory and Applications, 184, pp. 507-533, 2020.
8. Ferreira, O. P; Németh, S. Z.; Xiao, L. On the Spherical Quasi-convexity of Quadratic Functions on Spherically Subdual Convex Sets. Journal of Optimization Theory and Applications, v. 187, p. 1-21, 2020.
9. Ferreira, O.P.; Louzeiro, M. S.; Prudente, L. F. First Order Methods for Optimization on Riemannian Manifolds, Handbook of Variational Methods for Nonlinear Geometric Data, p. 499-525, 2020.
10. Gonçalves, M. L. N.; Prudente, L.F., On the extension of the Hager-Zhang conjugate gradient method for vector optimization. Computational Optimization and Applications, v. 76(3), p. 899-916, 2020.
11. Gonçalves, M. L. N.; Oliveira, F.R. On the global convergent of an inexact quasi-Newton conditional gradient method for constrained nonlinear systems. Numerical Algorithms, 84(2), 609-631, 2020.
12. Gonçalves, M. L. N.; Menezes, T.C. Gauss-Newton method with approximate projections for solving constrained nonlinear least squares problems. Journal of Complexity, 58(1), 101459, 2020.
13. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. On the iteration-complexity of a non-Euclidean hybrid proximal extragradient and a proximal ADMM. Optimization, 69(4), 847-873, 2020.
14. Kong, W.; Melo, J. G.; Monteiro, R. D. C. . An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems. Computational Optimization and Applications, v. 76, p. 305-346, 2020.
15. Marques-Alves, M.; Eckstein, J.; Geremia, M. ; Melo, J. G. . Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms. Computational Optimization and Applications, v. 75, p. 389-422, 2020.
Publications 2019
1. Ferreira, O. P; Louzeiro, M. S.; Prudente, L. F..Gradient Method for Optimization on Riemannian Manifolds with Lower Bounded Curvature, SIAM J. Optim., 29(4), p. 2517–2541, 2019, [MatLab_Codes]
2. Kong, W. ; Melo, Jefferson G. ; Monteiro, R. D. C. . Complexity of a Quadratic Penalty Accelerated Inexact Proximal Point Method for Solving Linearly Constrained Nonconvex Composite Programs. SIAM J. Optim.,, v. 29(4), p. 2566-2593, 2019.
3. Lucambio Pérez, L. R. and Prudente, L. F, A Wolfe line search algorithm for vector optimization, ACM Transactions on Mathematical Software 45(4), pp. 37:1-37:23, 2019.
4. Díaz Millán, R., Machado, M. Pentón . Inexact proximal $$epsilon $$ -subgradient methods for composite convex optimization problems. Journal of Global Optimization, v. 75 (4), p. 1029–1060, 2019.
5. Argyros, I.K. ; Silva, G.N. . Extending the Applicability of Inexact Gauss-Newton Method for Solving Nonlinear Least Square Problems. Journal of the Korean Mathematical Society, v. 56, p. 311-327, 2019.
6. Argyros, I.K. ; Silva, G.N. . Extending the Kantorovich’s theorem on Newton’s method for solving strongly regular generalized equation, Optimization Letters, v. 13(1), p. 213–226, 2019.
7. Adona, V.A.; Gonçalves, M. L. N.; Melo, J. G. A Partially Inexact Proximal Alternating Direction Method of Multipliers and Its Iteration-Complexity Analysis. J. Optim. Theory App., 182(2): 640–666,2019 (pdf).
8. Adona, V.A.; Gonçalves, M. L. N.; Melo, J. G.. Iteration-complexity of a generalized alternating direction method of multipliers. Journal of Global Optimization, 73(2):331-348, 2019 (pdf).
9. De Oliveira, F. R.; Ferreira, O. P.; Silva, G. N. Newton’s method with feasible inexact projections for solving constrained generalized equations, Comput. Optim. and Appl., v. 72, n. 1, p. 159-177, 2019. (pdf).
10. Ferreira, O. P.; Németh, S. Z; Xiao, L. On the spherical quasi-convexity of quadratic functions, Linear Algebra and Appl., v.562, n. 1, p. 205-222, 2019. (pdf).
11. Ferreira, O. P.; Németh, S. Z.; On the spherical convexity of quadratic functions, J. Global Optim. v. 73, n. 3, p. 537-545, 2019. (pdf).
12. Ferreira, O. P; Louzeiro, M. S.; Prudente, L. F. Iteration-complexity of the subgradient method on Riemannian manifolds with lower bounded curvature, Optimization,v.68, n.4, p. 713-729 , 2019. (pdf).
13. Ferreira, O. P.; Silva, G. N. Inexact Newton's method to Nonlinear function with values in a cone, Applicable Analysis, v. 98, n.8, p. 1461-1477, 2019. (pdf).
14. Bello Cruz, J.Y., Díaz Millán, R., Phan, H.M. Conditional extragradient algorithms for solving variational inequalities. Pacific Journal of Optimization. v.15, 331--357 (2019).
15. Bento, G. C., Bitar, S. D. B., Da Cruz Neto, J. X., Oliveira, P. R., De Oliveira Souza, J. C.: Computing Riemannian Center of Mass on Hadamard Manifolds. J. Optim. Theory App., v. 183, p. 977-992, 2019.
16. Díaz Millán R., Lindstrom Scott B., Roshchina V. Comparing Averaged Relaxed Cutters and Projection Methods: Theory and Examples. BOOK CHAPTERS. Accepted to Special Springer Volume commemorating Jon Borwein, Springer Proceedings in Mathematics and Statistics, 2019. (pdf)
17. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems. Pacific journal of optimization, 15(3), 379-398, 2019. (pdf).
Publications 2018
1. Lucambio Pérez, L. R.; Prudente, L. F. Non-linear conjugate gradient methods for vector optimization, SIAM J. Optim., v. 28, p. 2690-2720, 2018.
2. Ferreira, O. P.; Silva, G. N. Local convergence analysis of Newton’s method for solving strongly regular generalized equations, J. Math. Anal. Appl., v.458, n.1, p.481-496, 2018 (pdf).
3. Ferreira, O. P.; Németh, S. Z. . How to project onto extended second order cones. J. Global Optim. , v. 70, p. 707-718, 2018.
4. Bento, G. C.; Ferreira, O. P.; Pereira, Y. R. L. Proximal Point Method for Vector Optimization on Hadamard Manifolds,Operations Research Letters, v.46, n.1, p.13–18, 2018, (pdf).
5. Bento, G. C.; Ferreira, O. P.; Soubeyran, A; Sousa Junior, V. Inexact Multi-Objective Local Search Proximal Algorithms: Application to Group Dynamic and Distributive Justice Problems, J. Optim. Theory Appl., v. 177, p. 181-200, 2018. (pdf).
6. Bento, G. C.; Ferreira, O. P.; Sousa Junior, V. Proximal point method for a special class of nonconvex multiobjective optimization problem, Optim. Lett., v. 12, p. 311–320, 2018. (pdf).
7. Bento, G. C.; Cruz Neto, J. X. ; Santos, P. S. M. ; Souza, S. S. . A weighting subgradient algorithm for multiobjective optimization. Optimization Letters, v. 12, p. 399-410, 2018.
8. Bento, G.C; Bouza Allende, G. ; Pereira, Y. R. L.. A Newton-Like Method for Variable Order Vector Optimization Problems. J. Optim. Theory Appl., , v. 177, p. 201-221, 2018.
9. Bento, G. C.; Cruz Neto, J. X. ; López, G. ; Soubeyran, A. ; Souza, J. C. O. . The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem. SIAM J. Optim.,, v. 28, p. 1104-1120, 2018.
10. Bento, G. C.; da Cruz Neto, J. X ; Meireles, L. V. . Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds. J. Optim. Theory Appl. , p. 1-16, 2018.
11. Gonçalves, M. L. N.; Oliveira, F.R.. An inexact Newton-Like gradient method for constrained nonlinear systems. Applied Numerical Mathematics, Vol 132(1), 22-34. 2018 (pdf).
12. Gonçalves, M. L. N. On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize. Applied Mathematics and Computation, Vol 336 (1), 315-325, 2018 (pdf).
13. Gonçalves, M. L. N.; Marques Alves, M; Melo, J. G.. Pointwise and ergodic convergence rates of a variable metric proximal ADMM. J. Optim. Theory Appl Vol 177, No.1: pp 448-478, 2018. (pdf)
14. Díaz Millán, R. Two algorithms for solving systems of inclusion problems. Numerical Algorithms, v. 78, p. 1111-1127, 2018.
Publications 2017
1. Ferreira, O. P.; Jean-Alexis, Célia; Piétrus, Alain . Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds, J. Optim. Theory Appl., v. 175, p. 624-651, 2017. (pdf).
2. Ferreira, O. P.; Silva, G. N. Kantorovich's theorem on Newton's method for solving strongly regular generalized equation, SIAM J. Optim., v. 27 (2), p. 910-926, 2017.(pdf).
3. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework. SIAM J. Optim., Vol. 27, No. 1 : pp. 379-407, 2017.
4. Bello Cruz, J. Y.; Ferreira, O. P.; Németh, S. Z.; Prudente, L. F., A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone. Linear Algebra and its Applications 513, 160-181, 2017.
Publications 2016
1. Barrios, J. G.; Bello Cruz, J. Y.; Ferreira, O. P.; Németh, S. Z. A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming. J. Comput. Appl. Math. 301 (2016), 91-100.
2. Batista, Edvaldo E. A.; Bento, G. C.; Ferreira, O. P. ; Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds. J. Optim. Theory Appl. 170 (2016), no. 3, 916-931.
3. Bello Cruz, J. Y.; Ferreira, O. P.; Prudente, L. F. On the global convergence of the inexact semi-smooth Newton method for absolute value equation. Comput. Optim. Appl. 65 (2016), no. 1, 93-108.
4. Bento, G. C.; Cruz Neto, J. X.; Lopes, J. O.; Soares, P. A., Jr.; Soubeyran, A. Generalized proximal distances for bilevel equilibrium problems. SIAM J. Optim. 26 (2016), no. 1, 810–830.
5. Bento, G. C. ; da Cruz Neto, J. X.; Oliveira, Paulo Roberto. A new approach to the proximal point method: convergence on general Riemannian manifolds. J. Optim. Theory Appl. 168 (2016), no. 3, 743–755.
6. Gonçalves, M. L. N. Inexact Gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition. Numer. Algorithms 72 (2016), no. 2, 377–392.
7. Gonçalves, M. L. N.; Melo, Jefferson G. A Newton conditional gradient method for constrained nonlinear systems. Journal of Computational and Applied Mathematics, 311 (2016), 473-483.
8. Bento, G. C.; Cruz Neto, J. X.; Soubeyran, A.; Sousa Júnior, Valdinês L. de. Dual Descent Methods as Tension Reduction Systems. J. Optim. Theory Appl. 171 (2016), no. 1, 209-227.
10. Bello Cruz, J. Y.; De Oliveira, W. . On Weak and Strong Convergence of the Projected Gradient Method for Convex Optimization in Real Hilbert Spaces. Numerical Functional Analysis and Optimization, v. 37, p. 129-144, 2016.
11. Bauschke, H. H. ; Bello Cruz, J.Y. ; Nghia, T. A. ; Phan, Hung M. ; Wang, Xianfu. Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces. Numerical Algorithms, v. 1, p. 1-44, 2016.
12.Van Ackooij, W. ; Bello Cruz, J.Y. ; Oliveira, W. . A strongly convergent proximal bundle method for convex minimization in Hilbert spaces. Optimization (Print), v. 65, p. 145-167, 2016.
13. Bello Cruz, J. Y.; Nghia, T. A. . On the convergence of the forward-backward splitting method with linesearches. Optimization Methods & Software (Print), v. 1, p. 1-30, 2016.
Publications 2015
1. Barrios, Jorge; Ferreira, O. P. ; Németh, Sándor Z. Projection onto simplicial cones by Picard's method. Linear Algebra Appl. 480 (2015), 27-43
2. Batista, E. E. A.; Bento, G. C.; Ferreira, O. P. An existence result for the generalized vector equilibrium problem on Hadamard manifolds. J. Optim. Theory Appl. 167 (2015), no. 2, 550-557.
3. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64 (2015), no. 2, 289-319.
4. Bento, G. C.; Soubeyran, A. A generalized inexact proximal point method for nonsmooth functions that satisfies Kurdyka Lojasiewicz inequality. Set-Valued Var. Anal. 23 (2015), no. 3, 501–517.
5. Bento, G. C.; Soubeyran, A. Generalized inexact proximal algorithms: routine's formation with resistance to change, following worthwhile changes. J. Optim. Theory Appl. 166 (2015), no. 1, 172–187.
6. Birgin, E. G.; Martínez, J. M.; Prudente, L. F. Optimality properties of an augmented Lagrangian method on infeasible problems. Comput. Optim. Appl. 60 (2015), no. 3, 609–631.
7. Bittencourt, Tiberio; Ferreira, O. P. Local convergence analysis of inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds. Appl. Math. Comput. 261 (2015), 28-38.
8. Burachik, Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. The exact penalty map for nonsmooth and nonconvex optimization. Optimization 64 (2015), no. 4, 717–738.
9. Ferreira, O. P. A robust semi-local convergence analysis of Newton's method for cone inclusion problems in Banach spaces under affine invariant majorant condition. J. Comput. Appl. Math. 279 (2015), 318-335.
10. Ferreira, O. P.; Németh, S. Z. Projection onto simplicial cones by a semi-smooth Newton method. Optim. Lett. 9 (2015), no. 4, 731-741.
11. Gonçalves, M. L. N.; Melo, J. G.; Prudente, L. F. Augmented Lagrangian methods for nonlinear programming with possible infeasibility. J. Global Optim. 63 (2015), no. 2, 297–318.
12. Gonçalves, M. L. N.; Oliveira, P. R. Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition. Optimization 64 (2015), no. 3, 577–594.
14. Bello Cruz, J. Y.; Iusem, A. N. . Full convergence of an approximate projection method for nonsmooth variational inequalities. Mathematics and Computers in Simulation (Print), v. 114, p. 2-13, 2015.
Publications 2014
1. Bello Cruz, J. Y.; Bouza Allende, G.; Lucambio Pérez, L. R. Subgradient algorithms for solving variable inequalities. Appl. Math. Comput. 247 (2014), 1052-1063.
2. Ferreira, O. P.; Iusem, A. N.; Németh, S. Z. Concepts and techniques of optimization on the sphere. TOP 22 (2014), no. 3, 1148-1170.
3. Bello Cruz, J. Y.; Lucambio Pérez, L. R. A subgradient-like algorithm for solving vector convex inequalities. J. Optim. Theory Appl. 162 (2014), no. 2, 392-404.
4. Bento, G. C.; Cruz Neto, J. X.; Soubeyran, A. A proximal point-type method for multicriteria optimization. Set-Valued Var. Anal. 22 (2014), no. 3, 557–573.
5. Bento, G. C.; Cruz Neto, J. X. Finite termination of the proximal point method for convex functions on Hadamard manifolds. Optimization 63 (2014), no. 9, 1281–1288.
6. Bento, G. C.; Cruz Neto, J. X.; Oliveira, P. R.; Soubeyran, A. The self regulation problem as an inexact steepest descent method for multicriteria optimization. European J. Oper. Res. 235 (2014), no. 3, 494–502.
8. Bello Cruz, J. Y.; De Oliveira, W. . Level bundle-like algorithms for convex optimization. Journal of Global Optimization (Dordrecht. Online), v. 59, p. 787-809, 2014.
9. Bauschke, HEINZ H. ; Bello Cruz, J.Y. ; Nghia, TranT.A. ; Phan, Hung M. ; Wang, Xianfu. The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. Journal of Approximation Theory v. 185, p. 63-79, 2014.
10. Bello Cruz, J. Y.; Bouza Allende, G. . A Steepest Descent-Like Method for Variable Order Vector Optimization Problems. Journal of Optimization Theory and Applications, v. 162, p. 371-391, 2014.
11. Birgin, E. G.; Martínez, J. M.; Prudente, L. F. Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming. J. Global Optim. 58 (2014), no. 2, 207–242.
Publications 2013
1. Ferreira, O. P.; Iusem, A. N.; Németh, S. Z. Projections onto convex sets on the sphere. J. Global Optim. 57 (2013), no. 3, 663-676.
2. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition. SIAM J. Optim. 23 (2013), no. 3, 1757-1783.
3. Da Cruz Neto, J. X.; Da Silva, G. J. P.; Ferreira, O. P.; Lopes, J. O. A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54 (2013), no. 3, 461-472.
4. Bello Cruz, J. Y.; Santos, P. S. M. ; Scheimberg, S. . A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems. Journal of Optimization Theory and Applications, v. 159, p. 562-575, 2013.
5. Marques Alves, M.; Melo, J. G. Strong convergence in Hilbert spaces via Γ-duality. J. Optim. Theory Appl. 158 (2013), no. 2, 343–362.
6. Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. An inexact modified subgradient algorithm for primal-dual problems via augmented Lagrangians. J. Optim. Theory Appl. 157 (2013), no. 1, 108–131.
7. Gonçalves, M. L. N. Local convergence of the Gauss-Newton method for injective-overdetermined systems of equations under a majorant condition. Comput. Math. Appl. 66 (2013), no. 4, 490–499.
8. Bento, G. C.; Cruz Neto, J. X. A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159 (2013), no. 1, 125–137.
9. Bento, G. C.; da Cruz Neto, J. X.; Santos, P. S. M. An inexact steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 159 (2013), no. 1, 108–124.
10. Bello Cruz, J.Y.. A Subgradient Method for Vector Optimization Problems. SIAM Journal on Optimization (Print), v. 23, p. 2169-2182, 2013.
Publications 2012
1. Ferreira, O. P. ; Silva, Roberto C. M. Local convergence of Newton's method under a majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32 (2012), no. 4, 1696-1713.
2. Ferreira, O. P.; Németh, S. Z. Generalized isotone projection cones. Optimization 61 (2012), no. 9, 1087-1098.
3. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154 (2012), no. 1, 88-107.
4. Ferreira, O. P.; Svaiter, B. F. A robust Kantorovich's theorem on the inexact Newton method with relative residual error tolerance. J. Complexity 28 (2012), no. 3, 346-363.
5. Ferreira, O. P.; Németh, S. Z. Generalized projections onto convex sets. J. Global Optim. 52 (2012), no. 4, 831-842.
6. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Local convergence analysis of inexact Gauss-Newton like methods under majorant condition. J. Comput. Appl. Math. 236 (2012), no. 9, 2487-2498.
7. Martínez, J. M.; Prudente, L. F. Handling infeasibility in a large-scale nonlinear optimization algorithm. Numer. Algorithms 60 (2012), no. 2, 263–277.
8. Bento, Glaydston C.; Melo, Jefferson G. Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152 (2012), no. 3, 773–785.
9.Bello Cruz, J. Y.; Iusem, A. N. . An explicit algorithm for monotone variational inequalities. Optimization, v. 61, p. 855-871, 2012.
Publications 2011
1. Bello Cruz, J. Y.; Lucambio Pérez, L. R.; Melo, J. G. Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. 74 (2011), no. 16, 5268-5273.
2. Ferreira, O. P.; Gonçalves, M. L. N. Local convergence analysis of inexact Newton-like methods under majorant condition. Comput. Optim. Appl. 48 (2011), no. 1, 1-21.
3. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Local convergence analysis of the Gauss-Newton method under a majorant condition. J. Complexity 27 (2011), no. 1, 111-125.
4. Ferreira, O. P. Local convergence of Newton's method under majorant condition. J. Comput. Appl. Math. 235 (2011), no. 5, 1515-1522.
5.Bello Cruz, J.Y.; Pijeira, H. ; Márquez, C. ; Urbina, W. . Sobolev-Gegenbauer-type orthogonality and a hydrodynamical interpretation. Integral Transforms and Special Functions, v. 22, p. 711-722, 2011.
6.Bello Cruz, J.Y.; Iusem, A. N. . A Strongly Convergent Method for Nonsmooth Convex Minimization in Hilbert Spaces. Numerical Functional Analysis and Optimization, v. 32, p. 1009-1018, 2011.
Publications 2010
1. Bello Cruz, J. Y.; Lucambio Pérez, L. R. Convergence of a projected gradient method variant for quasiconvex objectives. Nonlinear Anal. 73 (2010), no. 9, 2917-2922.
2. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73 (2010), no. 2, 564-572.
3. Burachik, R. S.; Iusem, A. N.; Melo, J. G. Duality and exact penalization for general augmented Lagrangians. J. Optim. Theory Appl. 147 (2010), no. 1, 125–140.
4. Burachik, Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. A primal dual modified subgradient algorithm with sharp Lagrangian. J. Global Optim. 46 (2010), no. 3, 347–361.
5. Bello Cruz, J.Y.; Pijeira, H. ; Urbina, W. . On polar Legendre polynomials. The Rocky Mountain Journal of Mathematics, v. 40, p. 2025-2036, 2010.
6. Bello Cruz, J. Y.; Iusem, A. N. . Convergence of direct methods for paramonotone variational inequalities. Computational Optimization and Applications, v. 46, p. 247-263, 2010
Publications 2009
1. Ferreira, O. P.; Oliveira, P. R.; Silva, R. C. M. On the convergence of the entropy-exponential penalty trajectories and generalized proximal point methods in semidefinite optimization. J. Global Optim. 45 (2009), no. 2, 211-227.
2. Ferreira, O. P. Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle. IMA J. Numer. Anal. 29 (2009), no. 3, 746-759.
3. Ferreira, O. P.; Svaiter, B. F. Kantorovich's majorants principle for Newton's method. Comput. Optim. Appl. 42 (2009), no. 2, 213-229.
4. Bello Cruz, J.Y.; Iusem, A. N. . A Strongly Convergent Direct Method for Monotone Variational Inequalities in Hilbert Spaces. Numerical Functional Analysis and Optimization, v. 30, p. 23-36, 2009.
Publications 2008
1. da Cruz Neto, J. X.; Ferreira, O. P.; Oliveira, P. R.; Silva, R. C. M. Central paths in semidefinite programming, generalized proximal-point method and Cauchy trajectories in Riemannian manifolds. J. Optim. Theory Appl. 139 (2008), no. 2, 227-242.
2. Ferreira, O. P. Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68 (2008), no. 6, 1517-1528.
Publications 2007
1. da Cruz Neto, J. X.; Ferreira, O. P.; Iusem, A. N.; Monteiro, R. D. C. Dual convergence of the proximal point method with Bregman distances for linear programming. Optim. Methods Softw. 22 (2007), no. 2, 339-360.
Publications 2006
1. da Cruz Neto, J. X.; Ferreira, O. P.; Pérez, L. R. Lucambio; Németh, S. Z. Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35 (2006), no. 1, 53-69.
2. Ferreira, O. P. Convexity with respect to a differential equation. J. Math. Anal. Appl. 315 (2006), no. 2, 626-641.
3. Ferreira, O. P. Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313 (2006), no. 2, 587-597.
Publications 2005
1. da Cruz Neto, João X.; Ferreira, O. P. ; Monteiro, Renato D. C. Asymptotic behavior of the central path for a special class of degenerate SDP problems. Math. Program. 103 (2005), no. 3, Ser. A, 487-514.
2. Ferreira, O. P.; Pérez, L. R. Lucambio; Németh, S. Z. Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31 (2005), no. 1, 133-151.
Publications 2002
1. Ferreira, O. P.; Oliveira, P. R. Proximal point algorithm on Riemannian manifolds. Optimization 51 (2002), no. 2, 257-270.
2. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Pérez, L. R. Contributions to the study of monotone vector fields. Acta Math. Hungar. 94 (2002), no. 4, 307-320.
3. Ferreira, O. P.; Svaiter, B. F. Kantorovich's theorem on Newton's method in Riemannian manifolds. J. Complexity 18 (2002), no. 1, 304-329.
Publications 2000
1. da Cruz Neto, J. X.; Ferreira, O. P. Q-quadratic convergence on Newton's method from data at one point. Int. J. Appl. Math. 3 (2000), no. 4, 441-447.
2. Iusem, Alfredo N.; Pérez, Luis R. Lucambio An extragradient-type algorithm for non-smooth variational inequalities. Optimization 48 (2000), no. 3, 309-332.
3. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Pérez, L. R. Monotone point-to-set vector fields. Dedicated to Professor Constantin Udri-te. Balkan J. Geom. Appl. 5 (2000), no. 1, 69-79.
Publications 1999
1. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Perez, L. R. A proximal regularization of the steepest descent method in Riemannian manifold. Balkan J. Geom. Appl. 4 (1999), no. 2, 1-8.
Publications 1998
1. Ferreira, O. P.; Oliveira, P. R. Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97 (1998), no. 1, 93-104.